Top-Down Parsing

Syntax Analysis

* Parser = Syntax analyzer
\square Input: sequence of tokens from lexical analysis
\square Output: a parse tree of the program
- E.g., AST
\square Process:
- Try to derive from a starting symbol to the input string (How?)
- Build the parse tree following the derivation
* Scanner and parser
\square Scanner looks at the lower level part of the programming language
- Only the language for the tokens
\square Parser looks at the higher lever part of the programming language
- E.g., if statement, functions
- The tokens are abstracted

Recursive Descent Parsing

* How to parse
\square The easy way: try till it parses
* Algorithm
\square For a non-terminal
- Generally, follow leftmost derivation
- i.e., try to expand the first non-terminal
- When there are more than one production rules for the non-terminal
- Follow a predetermined order (easy for backtracking)
\square For the derived terminals
- Compared against input
- Match - advance input, continue
- Not match - backtrack
\square Parsing fails if all possible derivations have been tried but still no match

Recursive Descent Parsing

* Example

Rule 1: $\mathrm{S} \rightarrow \mathrm{a} \mathrm{S} \mathrm{b}$
Rule 2: $\mathrm{S} \rightarrow \mathrm{b}$ S a
Rule 3: $S \rightarrow B$
Rule 4: B \rightarrow b B
Rule 5: $\mathrm{B} \rightarrow \varepsilon$
\square Parse: a abbb

- Has to use R1: S \Rightarrow a S b
- Again has to use R1: a S b \Rightarrow a a S b b
- Now has to use Rule 2 or 3, follow the order (always R2 first):
- \quad a $a S b b \Rightarrow a \operatorname{b} S a b b \Rightarrow a \operatorname{b} b S a a b b \Rightarrow a a b b b S a a a b b$
- Now cannot use Rule 2 any more: \Rightarrow a a b b b B a a abb \Rightarrow a a b bbB a a a b b \Rightarrow incorrect, backtrack
- After some backtracking, finally tried
- $\mathrm{aSb} \Rightarrow \mathrm{a}$ a S b b \Rightarrow a abBbb \Rightarrow a abbb \Rightarrow worked

Recursive Descent Parsing

* Remarks
\square Why leftmost derivation
- Generally, input is read from left to right
- Allow matching with input easily after expansion
\square Doesn't work when the grammar is left recursive

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~F} \mid \mathrm{F} \\
& \mathrm{~F} \rightarrow(\mathrm{E})|\mathrm{id}| \text { num }
\end{aligned}
$$

- Parse: $\mathrm{x}+2$ * y (id + num *id)
- Will repeatedly apply $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \Rightarrow$ won't terminate
\square Very inefficient
- Since there is a large space to search for
\Rightarrow Need predictive parsing that never backtracks

Predicative Parsing

* Need to immediately know which rule to apply when seeing the next input character
\square If for every non-terminal X
- We know what would be the first terminal of each X's production
- And the first terminal of each X's production is different
\square Then
- When current leftmost non-terminal is X
- And we can look at the next input character
- \Rightarrow We know exactly which production should be used next to expand X

Predicative Parsing

* Need to immediately know which rule to apply when seeing the next input character
\square If for every non-terminal X
- We know what would be the first terminal of each X's production
- And the first terminal of each X's production is different
\square Example

Rule 2: $\mathrm{S} \rightarrow \mathrm{b}$ S a
Rule 3: $\mathrm{S} \rightarrow \mathrm{B}$
Rule 4: B \rightarrow b B
Rule 5: $\mathrm{B} \rightarrow \varepsilon$

If next input is a, use R1
If next input is b, use R2
But, R3's first terminal is also b
Won’t work!!!

Predicative Parsing

* Need to immediately know which rule to apply when seeing the next input character
\square If for every non-terminal X
- We know what would be the first terminal of each X's production
- And the first terminal of each X's production is different
\square What grammar does not satisfy the above?
- If two productions of the same non-terminal have the same first symbol (N or T), you can see immediately that it won't work
- $S \rightarrow$ b $\operatorname{sa|bB}$
- $S \rightarrow B$ a \mid B C
- If the grammar is left recursive, then it won't work
- $\mathrm{S} \rightarrow \mathrm{Sa\mid bB}, \mathrm{~B} \rightarrow \mathrm{~b} \mid \mathrm{c}$
- The left recursive rule of S can generate all terminals that the other productions of S can generate
- $\mathrm{S} \rightarrow \mathrm{b}$ B can generate b , so, $\mathrm{S} \rightarrow \mathrm{S}$ a can also generate b

Predicative Parsing

* Need to rewrite the grammar
\square Left recursion elimination
- This is required even for recursive descent parsing algorithm
\square Left factoring
- Remove the leftmost common factors

Eliminate Left Recursion

* A grammar is left recursive
\square If it has at least one rule in the form $\mathrm{X} \rightarrow \mathrm{X} \alpha$
* How to eliminate left recursion?
\square Simple rule: $\mathrm{A} \rightarrow \mathrm{A} \alpha \mid \beta$
- Derivations will always be: $\mathrm{A} \Rightarrow \mathrm{A} \alpha \Rightarrow \mathrm{A} \alpha \alpha \Rightarrow^{*} \mathrm{~A} \alpha \alpha \ldots \alpha \Rightarrow$ $\beta \alpha \alpha \ldots \alpha$
- Rewrite into:
$\mathrm{A} \rightarrow \beta \mathrm{A}^{\prime}$
$\mathrm{A}^{\prime} \rightarrow \alpha \mathrm{A}^{\prime} \mid \varepsilon$
- $\mathrm{A} \Rightarrow \beta \mathrm{A}^{\prime} \Rightarrow \beta \alpha \mathrm{A}^{\prime} \Rightarrow \beta \alpha \alpha \mathrm{A}^{\prime} \Rightarrow{ }^{*} \beta \alpha \alpha \ldots \alpha \mathrm{~A}^{\prime} \Rightarrow \beta \alpha \alpha \ldots \alpha \varepsilon$

Eliminate Left Recursion

* How to eliminate left recursion?
\square In a general case:
- Group A's production rules as follows

$$
\mathrm{A} \rightarrow \mathrm{~A} \alpha_{1}\left|\mathrm{~A} \alpha_{2}\right| \ldots\left|\mathrm{A} \alpha_{\mathrm{m}}\right| \beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{\mathrm{n}}
$$

- The left recursive ones and the non-left recursive ones
- Rewrite A's production rules as follows

$$
\mathrm{A} \rightarrow \beta_{1} \mathrm{~A}^{\prime}\left|\beta_{2} \mathrm{~A}^{\prime}\right| \ldots \mid \beta_{\mathrm{n}} \mathrm{~A}^{\prime}
$$

$$
\mathrm{A}^{\prime} \rightarrow \alpha_{1} \mathrm{~A}^{\prime}\left|\alpha_{2} \mathrm{~A}^{\prime}\right| \ldots\left|\alpha_{\mathrm{m}} \mathrm{~A}^{\prime}\right| \varepsilon
$$

- The derived string will always ending up with β_{i} in front
- Followed by any combination of α_{i} 's

Eliminate Left Recursion

* How to eliminate left recursion
\square Hidden left recursion

$$
\mathrm{S} \rightarrow \mathrm{~A} \alpha \mid \mathrm{b}
$$

$$
\mathrm{A} \rightarrow \mathrm{~A} \beta|\mathrm{~S} \gamma| \varepsilon
$$

* Elimination steps
\square Index the non-terminals $\left(A_{1}, A_{2}, \ldots\right)$
for $\mathrm{i}:=1$ to n do \quad-- current production
for $\mathrm{j}:=1$ to $\mathrm{i}-1$ do $\quad-$ previous non-terminals
if A_{j} appears in A_{i} 's production, like $A_{i} \rightarrow A_{j} \gamma$, then

$$
\mathrm{A}_{\mathrm{i}} \rightarrow \delta_{1} \gamma\left|\delta_{2} \gamma\right| \ldots \text { (assume that } \mathrm{A}_{\mathrm{j}} \rightarrow \delta_{1}\left|\delta_{2}\right| \ldots \text {) }
$$

eliminate left recursion for A_{i} 's productions
\square E.g., when processing A
$\mathrm{A} \rightarrow \mathrm{S} \gamma$ is substituted by $\mathrm{A} \rightarrow \mathrm{A} \alpha \gamma \mid \mathrm{b} \gamma$ first then eliminate left recursion for A

Eliminate Left Recursion

* For grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~F} \mid \mathrm{F} \\
& \mathrm{~F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~A} \alpha \mid \beta \Rightarrow \\
& \mathrm{A} \rightarrow \beta \mathrm{~A}^{\prime} \\
& \mathrm{A}^{\prime} \rightarrow \alpha \mathrm{A}^{\prime}
\end{aligned}
$$

* E

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{TE} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{TE}^{\prime} \mid \varepsilon
\end{aligned}
$$

* T

$$
\mathrm{T} \rightarrow \mathrm{FT}{ }^{\prime}
$$

$$
\mathrm{T}^{\prime} \rightarrow * \mathrm{FT}^{\prime} \mid \varepsilon
$$

* F
$\mathrm{F} \rightarrow(\mathrm{E}) \mid$ id \mid num
- All start with non-terminals, no left recursion

Left Factoring

* Given a non-terminal A, represent its rules as:
$A \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \ldots \mid \gamma$
- α is the longest matching prefix of several A productions
- γ is the other productions that does not have leading α
- α should be eliminated to achieve predictive parsing
\square Rewrite the production rules

$$
\begin{aligned}
& \mathrm{A} \rightarrow \alpha \mathrm{~A}^{\prime} \mid \gamma \\
& \mathrm{A}^{\prime} \rightarrow \beta_{1}\left|\beta_{2}\right| \ldots
\end{aligned}
$$

Left Factoring

* Grammar
$S \rightarrow$ if E then S else S
$S \rightarrow$ if E then S

$$
\begin{gathered}
\mathrm{A} \rightarrow \alpha \beta 1|\alpha \beta 2| \ldots \mid \gamma \Rightarrow \\
\mathrm{A} \rightarrow \alpha \mathrm{~A}^{\prime} \mid \gamma \\
\mathrm{A}^{\prime} \rightarrow \beta 1|\beta 2| \ldots
\end{gathered}
$$

* Rewrite the rules
$S \rightarrow$ if E then $S S^{\prime}$
$S^{\prime} \rightarrow$ else $S \mid \varepsilon$
- Input: if a then if b then s1 else s2
- $S \Rightarrow$ if E then $S S^{\prime} \Rightarrow$ if a then $S S^{\prime} \Rightarrow$ if a then if E then $S S^{\prime} S^{\prime} \Rightarrow$ if a then if b then $S S^{\prime} S^{\prime} \Rightarrow$ if a then if b then s1 $S^{\prime} S^{\prime}$
- Could be: \Rightarrow if a then if b then s1 else s2 ε
- Could be: \Rightarrow if a then if b then $\mathrm{s} 1 \varepsilon$ else s2
- Left factoring cannot eliminate ambiguity

Eliminate Left Recursion and Left Factoring

* Given a grammar
- First eliminate left recursion
- Then perform left factoring
\square Now, compute "First" -- first terminals of each production
Grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{TE}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{TE}^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{FT}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow \text { FT' }^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

A language can be expressed by an infinite number
of grammars
You can rewrite a left recursive grammar into a
totally different form to make it not left recursive
But such grammar rewriting is not left recursion
elimination
Left recursion elimination is this specific process

- No longer left recursive
- No longer have left factors
- Ready to compute first

First(α)

* First $(\alpha)=\left\{\mathrm{t} \mid \alpha \Rightarrow^{*} \mathrm{t} \beta\right\}$
\square Consider all possible terminal strings derived from α
- The set of the first terminals of those strings
* For all terminals $t \in T$
- First $(t)=\{t\}$

First(α)

* For all non-terminals $X \in N$
\square If $\mathrm{X} \rightarrow \varepsilon \Rightarrow$ add ε to First(X)
I If $\mathrm{X} \rightarrow \alpha_{1} \alpha_{2} \ldots \alpha_{\mathrm{n}}$
- α_{i} is either a terminal or a non-terminal (not a string as usual)
\Rightarrow
- Add all terminals in $\operatorname{First}\left(\alpha_{1}\right)$ to $\operatorname{First}(X)$
- Exclude ε
- If $\varepsilon \in \operatorname{First}\left(\alpha_{1}\right) \wedge \ldots \wedge \varepsilon \in \operatorname{First}\left(\alpha_{i-1}\right)$ then add all terminals in $\operatorname{First}\left(\alpha_{\mathrm{i}}\right)$ to $\operatorname{First}(\mathrm{X})$
- If $\varepsilon \in \operatorname{First}\left(\alpha_{1}\right) \wedge \ldots \wedge \varepsilon \in \operatorname{First}\left(\alpha_{\mathrm{n}}\right)$ then add ε to $\operatorname{First}(\mathrm{X})$
* Apply the rules until nothing more can be added
- For adding t or ε : add only if t is not in the set yet

First(α)

* Grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{TE} \mathrm{E}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{TE}^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{FT}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow \mathrm{FT}^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

* First
$\operatorname{First}\left({ }^{*}\right)=\{*\}, \operatorname{First}(+)=\{+\}, \ldots$
First $(\mathrm{F})=\{($, id, num $\}$
First($\left.\mathrm{T}^{\prime}\right)=\{*, \varepsilon\}$
First $(T)=\operatorname{First}(F)=\{($, id, num $\}$
First($\left.E^{\prime}\right)=\{+, \varepsilon\}$
First $(E)=\operatorname{First}(T)=\{($, id, num $\}$

First(α)

* Grammar

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AB} \\
& \mathrm{~A} \rightarrow \mathrm{aA} \mid \varepsilon \\
& \mathrm{B} \rightarrow \mathrm{bB} \mid \varepsilon
\end{aligned}
$$

* First

First(A) $=\{\mathrm{a}, \varepsilon\}$
$\operatorname{First}(B)=\{b, \varepsilon\}$
First $(B)=\{\mathrm{B}, \varepsilon\}$
$\operatorname{First}(\mathrm{S})=\operatorname{First}(\mathrm{A})=\{\mathrm{a}, \varepsilon\}$$\quad$ Is this complete?

First(α)

* Grammar

	If we see a	If we see b	If we see c	If we see d
When expanding S	Use R1	Use R2	Use R1	Use R2
When expanding A	Use R3	-	Use R4	-
When expanding B	-	Use R5	-	Use R6

$\mathrm{S} \rightarrow \mathrm{AB} \mid \mathrm{B}$ (R1|R2)
$\mathrm{A} \rightarrow \mathrm{aA} \mid \mathrm{C}$ (R3|R4)
$B \rightarrow b B \mid d \quad(R 5 \mid R 6)$

* First

First $(A)=\{a, c\}$

Expands S, seeing a, use $\mathrm{R} 1: \mathrm{S} \Rightarrow \mathrm{AB}$Expands A , seeing a, use $\mathrm{R} 3: \mathrm{AB} \Rightarrow \mathrm{aBB}$Expands A , seeing c, use $\mathrm{R} 4: \mathrm{AB} \Rightarrow \mathrm{acB}$Expands B, seeing b, use R5: $a c B \Rightarrow \mathrm{acbB}$Expands B , seeing d, use R6: $\mathrm{acbB} \Rightarrow$ acbd

First(B) $=\{\mathrm{b}, \mathrm{d}\}$
First $(S)=\operatorname{First}(A) \cup \operatorname{First}(B)=\{a, b, c, d\}$

* Productions
\square First (R1) $=\{a, c\}$, First $(R 2)=\{b, d\}$
\square First $(R 3)=\{a\}$, First $(R 4)=\{c\}$
\square First (R5) $=\{b\}$, First $(R 6)=\{d\}$

First(α)

* Grammar

	If we see a	If we see b	If we see ε
When expanding S	Use R1	Use R1	Use R1
When expanding A	Use R2	-	Use R3
When expanding B	-	Use R4	Use R5

$$
\begin{array}{ll}
\mathrm{S} \rightarrow \mathrm{AB} & (\mathrm{R} 1) \tag{R1}\\
\mathrm{A} \rightarrow \mathrm{aA} \mid \varepsilon & (\mathrm{R} 2 \mid \mathrm{R} 3) \\
\mathrm{B} \rightarrow \mathrm{bB} \mid \varepsilon & (\mathrm{R} 4 \mid \mathrm{R} 5)
\end{array}
$$

* First

> Input: aabb
> Use R1: $\mathrm{S} \Rightarrow \mathrm{AB}$

Expands A, seeing a, use $R 2$: $A B \Rightarrow a A B$
Expands A, seeing a, use $R 2$: $a A B \Rightarrow a a A B$
Expands A, seeing b, What to do? Not in table!
First(A) $=\{\mathrm{a}, \varepsilon\}$
$\operatorname{First}(B)=\{b, \varepsilon\}$
$\operatorname{First}(\mathrm{S})=\operatorname{First}(\mathrm{A}) \cup \operatorname{First}(\mathrm{B})=\{\mathrm{a}, \mathrm{b}, \varepsilon\}$

* Productions
\square First (R1) $=\{a, b, \varepsilon\}$
\square First (R2) $=\{\mathrm{a}\}$, First $($ R3 $)=\{\varepsilon\}$
\square First $($ R4 $)=\{b\}$, First $(R 5)=\{\varepsilon\}$

Follow(α)

* Follow $(\alpha)=\left\{\mathrm{t} \mid \mathrm{S} \Rightarrow^{*} \alpha \mathrm{t} \beta\right\}$
\square Consider all strings that may follow α
The set of the first terminals of those strings
* Assumptions
- There is a $\$$ at the end of every input string
- S is the starting symbol
* For all non-terminals only
\square Add \$ into Follow(S)
- If $\mathrm{A} \rightarrow \alpha \mathrm{B} \beta \Rightarrow$ add First $(\beta)-\{\varepsilon\}$ into Follow(B)
- If $\mathrm{A} \rightarrow \alpha \mathrm{B}$ or
$\mathrm{A} \rightarrow \alpha \mathrm{B} \beta$ and $\varepsilon \in \operatorname{First}(\beta)$
\Rightarrow add Follow(A) into Follow(B)

Follow(α)

First

First(A) $=\{\mathrm{a}, \varepsilon\}$

Grammar	
$\mathrm{S} \rightarrow \mathrm{AB}$	(R1)
$\mathrm{A} \rightarrow \mathrm{aA} \mid \varepsilon$	(R2\|R3)
$\mathrm{B} \rightarrow \mathrm{bB} \mid \varepsilon$	(R4\|R5)

First(B) $=\{\mathrm{b}, \varepsilon\}$
$\operatorname{First}(\mathrm{S})=\operatorname{First}(\mathrm{A})=\{\mathrm{a}, \mathrm{b}, \varepsilon\}$

* Productions
\square First (R1) $=\{\mathrm{a}, \mathrm{b}, \varepsilon\}$

a, b, $\varepsilon\}$				If we see a	If we see b
		When expanding S		Use R1	Use R1
		When expanding A		Use R2	?
ε		When expanding B		-	Use R4
F1			If we see a	If we see b	If we see \$
When expanding S			Use R1	Use R1	Use R1
When expanding A			Use R2	Use R3	Use R3
	When expanding B		-	Use R4	Use R5

\square Follow $(S)=\{\$\}$
\square Follow $(B)=\operatorname{Follow}(S)=\{\$\}$
\square Follow $(\mathrm{A})=\operatorname{First}(\mathrm{B}) \cup$ Follow $(\mathrm{S})=\{\mathrm{b}, \$\}$

- Since $\varepsilon \in \operatorname{First(B)}$, Follow(S) should be in Follow(A)

Construct a Parse Table

* Construct a parse table $\mathrm{M}[\mathrm{N}, \mathrm{T} \cup\{\$\}]$
\square Non-terminals in the rows and terminals in the columns
* For each production $\mathrm{A} \rightarrow \alpha$
\square For each terminal $\mathrm{a} \in \operatorname{First}(\alpha)$
\Rightarrow add $\mathrm{A} \rightarrow \alpha$ to $\mathrm{M}[\mathrm{A}, \mathrm{a}]$
- Meaning: When at A and seeing input $\mathrm{a}, \mathrm{A} \rightarrow \alpha$ should be used
\square If $\varepsilon \in \operatorname{First}(\alpha)$ then for each terminal $a \in \operatorname{Follow}(A)$
\Rightarrow add $\mathrm{A} \rightarrow \alpha$ to $\mathrm{M}[\mathrm{A}, \mathrm{a}]$
- Meaning: When at A and seeing input $\mathrm{a}, \mathrm{A} \rightarrow \alpha$ should be used
- In order to continue expansion to ε
- $\mathrm{X} \rightarrow \mathrm{AC} \quad \mathrm{A} \rightarrow \mathrm{B} \quad \mathrm{B} \rightarrow \mathrm{b} \mid \varepsilon \quad \mathrm{C} \rightarrow \mathrm{cc}$
\square If $\varepsilon \in \operatorname{First}(\alpha)$ and $\$ \in \operatorname{Follow}(A)$
\Rightarrow add $\mathrm{A} \rightarrow \alpha$ to $\mathrm{M}[\mathrm{A}, \$]$
- Same as the above

First(α) and Follow(α) - another example

[First $\left({ }^{*}\right)=\{*$
Grammar
$\square \operatorname{First}(\mathrm{F})=\{($, id, num $\}$
$\square \operatorname{First}\left(\mathrm{T}^{\prime}\right)=\{*, \varepsilon\}$
$\square \operatorname{First}(T)=\operatorname{First}(F)=\{($, id, num $\}$
$\square \operatorname{First}\left(\mathrm{E}^{\prime}\right)=\{+, \varepsilon\}$

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{TE}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{TE}^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{FT}^{\prime} \\
& \mathrm{T} \rightarrow \text { FT' }^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E})|\mathrm{id}| \text { num }
\end{aligned}
$$

$\square \operatorname{First}(E)=\operatorname{First}(T)=\{($, id, num $\}$
\square Follow(E) $=\{\$)$,
\square Follow $\left(\mathrm{E}^{\prime}\right)=$ Follow $\left.(\mathrm{E})=\{\$),\right\}$
\square Follow $(T)=\{\$),+$,

- Since we have TE' from first two rules and E ' can be ε
- Follow $(T)=\left(\right.$ First $\left.\left(E^{\prime}\right)-\{\varepsilon\}\right) \cup$ Follow $\left(E^{\prime}\right)$
\square Follow $\left.\left(T^{\prime}\right)=\operatorname{Follow}(T)=\{\$),+,\right\}$
\square Follow $(\mathrm{F})=\{*, \$$, $),+\}$
- Follow $(\mathrm{F})=\left(\right.$ First $\left.\left(\mathrm{T}^{\prime}\right)-\{\varepsilon\}\right) \cup$ Follow $\left(\mathrm{T}^{\prime}\right)$

Construct a Parse Table

> Grammar
> $\mathrm{E} \rightarrow \mathrm{TE}$
> $\mathrm{E}^{\prime} \rightarrow+\mathrm{TE}^{\prime} \mid \varepsilon$
> $\mathrm{T} \rightarrow \mathrm{FT}^{\prime}$
> $\mathrm{T} \rightarrow{ }^{\prime} \mathrm{FT}^{\prime} \mid \varepsilon$
> $\mathrm{F} \rightarrow(\mathrm{E})|\mathrm{id}|$ num

$$
\begin{aligned}
& \text { Follow }(\mathrm{E})=\{\$,)\} \\
& \text { Follow(E') }=\{\$,)\} \\
& \text { Follow(T) } \left.=\{\$,)^{\prime},+\right\} \\
& \text { Follow(T) } \left.=\{\$,)^{2},+\right\} \\
& \text { Follow(T') }=\{\$,),+\} \\
& \text { Follow(F) }=\{*, \$,),+\}
\end{aligned}
$$

$\left.\mathrm{E} \rightarrow \mathrm{TE}{ }^{\prime}: \mathrm{E}^{\prime} \rightarrow \mathrm{E}^{\prime}-\mathrm{T} \rightarrow \mathrm{FT}^{\prime}: \mathrm{FT}^{\prime} \rightarrow{ }^{\prime} \mathrm{T}^{\prime} \rightarrow \varepsilon: \operatorname{Follow}\left(\mathrm{T}{ }^{\prime}\right)=\{\$),+,\right\}$

	id	num	*	+	()	\$
5	$\mathrm{E} \rightarrow$ TE'	$\mathrm{E} \rightarrow \mathrm{TE}^{\prime}$			$\mathrm{E} \rightarrow$ TE'		
E'				E' \rightarrow +TE')	$E^{\prime} \rightarrow \varepsilon$	$\mathrm{E}^{\prime} \rightarrow \varepsilon$
R	$\mathrm{T} \rightarrow \mathrm{FT}{ }^{\prime}$	T \rightarrow FT ${ }^{\prime}$			T \rightarrow FT'	\bigcirc	
T'		,	T' \rightarrow *FT'	$T^{\prime} \rightarrow \varepsilon$		T' $\rightarrow \varepsilon$	$\mathrm{T}^{\prime} \rightarrow \varepsilon$
F	$\mathrm{F} \rightarrow$ id	$\mathrm{F} \rightarrow$ num			$\mathrm{F} \rightarrow$ (E)		

Predictive Parsing

* Now we can have a predictive parsing mechanism
\square Use a stack to keep track of the expanded form
\square Initialization
- Put starting symbol S and \$ into the stack
- Add $\$$ to the end of the input string
- \$ is for the recognition of the termination configuration
\square If a is at the top of the stack and a is the next input symbol then
- Simply pop a from stack and advance on the input string
\square If A is on top of the stack and a is the next input symbol then
- Assume that $\mathrm{M}[\mathrm{A}, \mathrm{a}]=\mathrm{A} \rightarrow \alpha$
- Replace A by α in the stack
\square Termination
- When only $\$$ in the stack and in the input string
\square If A is on top of the stack and a is the next input but
- $\mathrm{M}[\mathrm{A}, \mathrm{a}]=$ empty \longrightarrow Error!

Build the Parse Tree

* For each non-terminal in the stack
\square Keep a pointer to its location in the parse tree
* Initialization
\square After putting S in stack, create $T(S)$ as the root of the tree and let S points to $\mathrm{T}(\mathrm{S})$
* At each expansion of $\mathrm{X} \rightarrow \alpha$
\square Create child nodes of $T(X)$ for all terminals and nonterminals in α
\square For each non-terminals added, let it point back to its corresponding tree node (when expanding, knowing where the node is in the tree)
* Termination
\square When the parsing terminates, the tree is built

LL(1) Grammar

* The predictive parsing we had is LL(1) parsing
\square First L: scanning input from left to right
\square Second L: Leftmost derivation
\square 1: lookahead 1 input character
\square Similar to recursive descent
- But use table to determine which production to use
- Use stack to keep track of pending non-terminals

LL(1) Grammar

* Requirements for LL(1) grammar
$\square \mathrm{A} \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots$
\square For all $\mathrm{i}, \mathrm{j}, \mathrm{i} \neq \mathrm{j}, \operatorname{First}\left(\alpha_{\mathrm{i}}\right) \cap \operatorname{First}\left(\alpha_{\mathrm{j}}\right)=\phi$
- $\mathrm{A} \rightarrow \mathrm{B} \mid \mathrm{a}, \mathrm{B} \rightarrow \mathrm{ab}$
- First of $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{A} \rightarrow$ a both has a
- Expanding A, seeing input a, can’t know which rule to use
\square If $\alpha_{i}=\varepsilon$, then, for all $\mathrm{j}, \mathrm{i} \neq \mathrm{j}, \operatorname{First}\left(\alpha_{\mathrm{j}}\right) \cap \operatorname{Follow}(\mathrm{A})=\phi$
- $\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \mathrm{ac} \mid \varepsilon, \mathrm{B} \rightarrow \mathrm{a}$
- First of $\mathrm{A} \rightarrow$ ac and Follow(A) both has a
- When seeing a while expanding A , not sure to use $\mathrm{A} \rightarrow$ ac or $\mathrm{A} \rightarrow \varepsilon$

More about LL Grammar

* What grammar is not LL(1)?
\square Left recursive
- $A \rightarrow A \alpha \mid \beta$
- First(β) \subseteq First(A)
- Two production rules of $\mathrm{A}: \mathrm{A} \rightarrow \mathrm{A} \alpha$ and $\mathrm{A} \rightarrow \beta$ have the same terminals in their "First" sets (or A $\rightarrow A \alpha$ has a super set)
\square Grammar that is not left factored
- Two productions with the same left symbols have the same First set
- $\mathrm{A} \rightarrow \alpha \beta \mid \alpha \delta \Rightarrow$ both rules will get into $\mathrm{M}[\mathrm{A}, \mathrm{f}]$
- f is any terminal in First(α)

More about LL Grammar

* What grammar is not LL(1)?

$$
\mathrm{S} \rightarrow \mathrm{~A} \mid \mathrm{B}
$$

$\mathrm{A} \rightarrow \mathrm{aaA} \mid \varepsilon$
$\mathrm{B} \rightarrow \mathrm{abB} \mid \mathrm{b}$

	a	b	$\$$
S	$\mathrm{S} \rightarrow \mathrm{A}$ $\mathrm{S} \rightarrow \mathrm{B}$	$\mathrm{S} \rightarrow \mathrm{B}$	$\mathrm{S} \rightarrow \mathrm{A}$
A	$\mathrm{A} \rightarrow$ aaA		$\mathrm{A} \rightarrow \varepsilon$
B	$\mathrm{B} \rightarrow$ abB	$\mathrm{B} \rightarrow \mathrm{b}$	

- First(A) $=\{\mathrm{a}, \varepsilon\}, \operatorname{First}(\mathrm{B})=\{\mathrm{a}, \mathrm{b}\}, \operatorname{First}(\mathrm{S})=\{\mathrm{a}, \mathrm{b}, \varepsilon\}$
- Follow(S) = \{\$\}, Follow(A) = \{\$\}, Follow(B) = \{\$\}
\square But this grammar is LL(2)
- If we lookahead 2 input characters, predictive parsing is possible
- $\operatorname{First}_{2}(\mathrm{~A})=\{\mathrm{aa}, \varepsilon\}, \operatorname{First}_{2}(\mathrm{~B})=\{\mathrm{ab}, \mathrm{b} \$\}, \operatorname{First}_{2}(\mathrm{~S})=\{\mathrm{aa}, \mathrm{ab}, \mathrm{b} \$, \varepsilon\}$

	aa	ab	$\mathrm{b} \$$	$\$$	$\mathrm{ba}, \mathrm{bb}, \mathrm{a} \$$
S	$\mathrm{~S} \rightarrow \mathrm{~A}$	$\mathrm{~S} \rightarrow \mathrm{~B}$	$\mathrm{~S} \rightarrow \mathrm{~B}$	$\mathrm{~S} \rightarrow \mathrm{~A}$	
A	$\mathrm{~A} \rightarrow \mathrm{aaA}$			$\mathrm{A} \rightarrow \varepsilon$	
B		$\mathrm{B} \rightarrow \mathrm{abB}$	$\mathrm{B} \rightarrow \mathrm{b}$		

More about LL Grammar

* What grammar is not LL(1)?
$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{ab} \mid \varepsilon$
$\mathrm{B} \rightarrow \mathrm{a}$

	a	b	$\$$
S	$\mathrm{~S} \rightarrow \mathrm{AB}$		$\mathrm{S} \rightarrow \mathrm{AB}$
A	$\mathrm{A} \rightarrow \mathrm{ab}$ $\mathrm{A} \rightarrow \varepsilon$		
B	$\mathrm{B} \rightarrow \mathrm{a}$		

- $\operatorname{First}(B)=\{a\}, \operatorname{First}(A)=\{a, \varepsilon\}, \operatorname{First}(S)=\{a, \varepsilon\}$
- Follow $(\mathrm{S})=\{\$\}$, Follow $(B)=\{\$\}$, Follow $(A)=\{a\}$

But this grammar is also LL(2)

- $\operatorname{First}_{2}(B)=\{a \$\}, \operatorname{First}_{2}(A)=\{a b, \varepsilon\}, \operatorname{First}_{2}(S)=\{a b, a \$\}$

	$\mathrm{a} \$$	ab	$\$$	\ldots
S	$\mathrm{~S} \rightarrow \mathrm{AB}$	$\mathrm{S} \rightarrow \mathrm{AB}$		
A	$\mathrm{A} \rightarrow \varepsilon$	$\mathrm{A} \rightarrow \mathrm{ab}$		
B	$\mathrm{B} \rightarrow \mathrm{a}$			

More about LL Grammar

LL(2) Parsing Example
$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{abA} \mid \varepsilon$
$\mathrm{B} \rightarrow \mathrm{aB} \mid \varepsilon$

First $_{2}(\mathrm{~A})=\{\mathrm{ab}, \varepsilon\}$
First $_{2}(\mathrm{~B})=\{\mathrm{aa}, \mathrm{a} \$, \varepsilon\}$
$\operatorname{First}_{2}(\mathrm{~S})=\{\mathrm{ab}, \mathrm{aa}, \mathrm{a} \$, \varepsilon\}$
Follow $_{2}(\mathrm{~S})=\{\$\}$
Follow $_{2}(\mathrm{~B})=\{\$\}$
Follow $_{2}(\mathrm{~A})=\{\mathrm{aa}, \mathrm{a}$, $\$\}$
Input: abaaa

	$\mathrm{a} \$$	aа	ab	$\$$
S	$\mathrm{~S} \rightarrow \mathrm{AB}$	$\mathrm{S} \rightarrow \mathrm{AB}$	$\mathrm{S} \rightarrow \mathrm{AB}$	$\mathrm{S} \rightarrow \mathrm{AB}$
A	$\mathrm{A} \rightarrow \varepsilon$	$\mathrm{A} \rightarrow \varepsilon$	$\mathrm{A} \rightarrow \mathrm{abA}$	$\mathrm{A} \rightarrow \varepsilon$
B	$\mathrm{B} \rightarrow \mathrm{aB}$	$\mathrm{B} \rightarrow \mathrm{aB}$		$\mathrm{B} \rightarrow \varepsilon$

Stack	Input	Action
S \$	abaaa\$	$\mathrm{S} \rightarrow \mathrm{AB}$
A B \$	abaaa\$	$\mathrm{A} \rightarrow \mathrm{abA}$
A B \$	aaa\$	$\mathrm{A} \rightarrow \varepsilon$
B \$	aaa\$	$\mathrm{B} \rightarrow \mathrm{aB}$
B \$	aa\$	$\mathrm{B} \rightarrow \mathrm{aB}$
B \$	a\$	$\mathrm{B} \rightarrow \mathrm{aB}$
B \$	$\$$	$\mathrm{~B} \rightarrow \varepsilon$
\$	$\$$	

LL(k) Grammar

* LL(k) parsing
\square Allow to lookahead k input characters
\square Can extend LL(1) parsing method to LL(k) parsing
- Build parsing table based on first k terminals - First $_{k}(X)$
* What grammar is not LL(k)? $\mathrm{S} \rightarrow \mathrm{A} \mid \mathrm{B}$
$\mathrm{A} \rightarrow \mathrm{aa} \mid$ aa
$\mathrm{B} \rightarrow \mathrm{aaB} \mid \mathrm{a}$

	aaa	aa\$	$\mathrm{a} \$$
S	$\mathrm{S} \rightarrow \mathrm{A}$ $\mathrm{S} \rightarrow \mathrm{B}$	$\mathrm{S} \rightarrow \mathrm{A}$	$\mathrm{S} \rightarrow \mathrm{B}$
A	$\mathrm{A} \rightarrow \mathrm{aaA}$	$\mathrm{A} \rightarrow \mathrm{aa}$	
O	$\mathrm{B} \rightarrow \mathrm{aaB}$		$\mathrm{B} \rightarrow \mathrm{a}$

- Even number of a's \Rightarrow parse with A production rule
- Odd number of a's \Rightarrow parse with B production rule
- Need to continue to lookahead till the end of the input string
- $\operatorname{First}_{3}(B)=\{$ aaa, $\mathrm{a} \$\}, \operatorname{First}_{3}(\mathrm{~A})=\{\mathrm{aaa}, \mathrm{a} \$\}, \operatorname{First}_{3}(\mathrm{~S})=\{\mathrm{aaa}, \mathrm{aa} \$, \mathrm{a} \$\}$

LL(k) Grammar

* What grammar is not LL(k)?

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{~A} \mid \mathrm{B} \\
& \mathrm{~A} \rightarrow \mathrm{aaA} \mid \text { aa } \\
& \mathrm{B} \rightarrow \mathrm{aaB} \mid \mathrm{a}
\end{aligned}
$$

* Can something be done? Rewrite the grammar $\mathrm{S} \rightarrow \mathrm{aaS}|\mathrm{E}| \mathrm{O}$
$\mathrm{E} \rightarrow$ aa
$\mathrm{O} \rightarrow \mathrm{a}$
\square Becomes LL(3)

	aaa	aa\$	$\mathrm{a} \$$
S	$\mathrm{~S} \rightarrow \mathrm{aaS}$	$\mathrm{S} \rightarrow \mathrm{E}$	$\mathrm{S} \rightarrow \mathrm{O}$
E		$\mathrm{E} \rightarrow \mathrm{aa}$	
O			$\mathrm{O} \rightarrow \mathrm{a}$

\square First $_{3}(\mathrm{E})=\{\mathrm{aa} \mathrm{\$}\}, \operatorname{First}_{3}(\mathrm{O})=\{\mathrm{a} \$\}, \operatorname{First}_{3}(\mathrm{~S})=\{$ aaa, $\mathrm{aa} \mathrm{\$}, \mathrm{a} \$\}$

LL(k) Grammar

* What grammar is not LL(k)?
\square Ambiguous grammars
$S \rightarrow$ if E then S else S
$S \rightarrow$ if E then S

LL(k) Grammar

* About LL(k) language

A language is $\operatorname{LL}(\mathrm{k})$ if there exists an $\operatorname{LL}(\mathrm{k})$ grammar for it
Check whether a grammar is $\operatorname{LL}(\mathrm{k})$

- If given an arbitrary k
- Always can find the same First ${ }_{k}$ substring for two X-productions
- Then the grammar is not LL(k)
\square There are CFGs that are not LL(k)

$$
\mathrm{S} \rightarrow \mathrm{~A} \mid \mathrm{B}
$$

$\mathrm{A} \rightarrow \mathrm{aAa} \mid$ aa
$\mathrm{B} \rightarrow \mathrm{aBb} \mid \mathrm{ab}$

- No matter how big the k is, one can always find more than k aaa...a in the first set of $S \rightarrow A$ and $S \rightarrow B$
- This is true for the language itself

LL(k) Grammar

* How about LL(0)?
\square Only one rule to use, no lookahead needed
\square Subsequently, only one word in the language

Top-Down Parsing -- Summary

* Top down parsing
\square Recursive descent parsing
\square Making it a predictive parsing algorithm
- Left recursion elimination
- Left factoring
\square LL parsing
- First set and Follow set
- Parse table construction
- Parsing procedure
\square LL grammars and languages
- LL(1) grammar
- LL(k) grammar

