Top-Down Parsing

Syntax Analysis

Parser = Syntax analyzer

□ Input: sequence of tokens from lexical analysis

□ Output: a parse tree of the program

• E.g., AST

□ Process:

- Try to derive from a starting symbol to the input string (How?)
- Build the parse tree following the derivation

Scanner and parser

□ Scanner looks at the lower level part of the programming language

• Only the language for the tokens

□ Parser looks at the higher lever part of the programming language

- E.g., if statement, functions
- The tokens are abstracted

Recursive Descent Parsing

- ✤ How to parse
 - □ The easy way: try till it parses

✤ Algorithm

- **G** For a non-terminal
 - Generally, follow leftmost derivation
 - i.e., try to expand the first non-terminal
 - When there are more than one production rules for the non-terminal
 - Follow a predetermined order (easy for backtracking)
- □ For the derived terminals
 - Compared against input
 - Match advance input, continue
 - Not match backtrack
- Parsing fails if all possible derivations have been tried but still no match

Recursive Descent Parsing

✤ Example

- Rule 1: $S \rightarrow a S b$ Rule 2: $S \rightarrow b S a$ Rule 3: $S \rightarrow B$ Rule 4: $B \rightarrow b B$ Rule 5: $B \rightarrow \varepsilon$
- $\Box Parse: a a b b b$
 - Has to use R1: $S \Rightarrow a S b$
 - Again has to use R1: $a S b \Rightarrow a a S b b$
 - Now has to use Rule 2 or 3, follow the order (always R2 first):
 - $a a S b b \Rightarrow a a b S a b b \Rightarrow a a b b S a a b b \Rightarrow a a b b b S a a a b b$
 - Now cannot use Rule 2 any more: ⇒ a a b b b B a a a b b ⇒ a a b b b B a a a b b ⇒ incorrect, backtrack
 - After some backtracking, finally tried
 - $a S b \Rightarrow a a S b b \Rightarrow a a b B b b \Rightarrow a a b b b \Rightarrow worked$

Recursive Descent Parsing

- ✤ Remarks
 - □ Why leftmost derivation
 - Generally, input is read from left to right
 - Allow matching with input easily after expansion
 - Doesn't work when the grammar is left recursive
 - $E \rightarrow E + T$
 - $T \to T \ast F \mid F$
 - $F \rightarrow (E) \mid id \mid num$
 - Parse: x + 2 * y (id + num * id)
 - Will repeatedly apply $E \rightarrow E + T \Rightarrow$ won't terminate

□ Very inefficient

- Since there is a large space to search for
- \Rightarrow Need *predictive parsing* that never backtracks

- Need to immediately know which rule to apply when seeing the next input character
 - □ If for every non-terminal X
 - We know what would be the first terminal of each X's production
 - And the first terminal of each X's production is different
 - **Then**
 - When current leftmost non-terminal is X
 - And we can look at the next input character
 - ⇒ We know exactly which production should be used next to expand X

- Need to immediately know which rule to apply when seeing the next input character
 - □ If for every non-terminal X
 - We know what would be the first terminal of each X's production
 - And the first terminal of each X's production is different

- Need to immediately know which rule to apply when seeing the next input character
 - □ If for every non-terminal X
 - We know what would be the first terminal of each X's production
 - And the first terminal of each X's production is different
 - □ What grammar does not satisfy the above?
 - If two productions of the same non-terminal have the same first symbol (N or T), you can see immediately that it won't work
 - $S \rightarrow b S a \mid b B$
 - $S \rightarrow B a \mid B C$
 - If the grammar is left recursive, then it won't work
 - $S \rightarrow S a \mid b B, B \rightarrow b B \mid c$
 - The left recursive rule of S can generate all terminals that the other productions of S can generate
 - $S \rightarrow b B$ can generate b, so, $S \rightarrow S$ a can also generate b

- ✤ Need to rewrite the grammar
 - □ Left recursion elimination
 - This is required even for recursive descent parsing algorithm
 - □ Left factoring
 - Remove the leftmost common factors

- ✤ A grammar is left recursive
 - $\Box \quad \text{If it has at least one rule in the form } X \to X\alpha$
- ✤ How to eliminate left recursion?
 - $\Box \quad \text{Simple rule: } A \to A\alpha \mid \beta$
 - Derivations will always be: $A \Rightarrow A\alpha \Rightarrow A\alpha\alpha \Rightarrow^* A\alpha\alpha...\alpha \Rightarrow \beta\alpha\alpha...\alpha$
 - Rewrite into:
 - $A \rightarrow \beta A'$
 - $A' \rightarrow \alpha A' \mid \epsilon$
 - $A \Rightarrow \beta A' \Rightarrow \beta \alpha A' \Rightarrow \beta \alpha \alpha A' \Rightarrow^* \beta \alpha \alpha \dots \alpha A' \Rightarrow \beta \alpha \alpha \dots \alpha \epsilon$

- ✤ How to eliminate left recursion?
 - □ In a general case:
 - Group A's production rules as follows

 $A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n$

- The left recursive ones and the non-left recursive ones
- Rewrite A's production rules as follows

 $\mathbf{A} \rightarrow \beta_1 \mathbf{A}' \mid \beta_2 \mathbf{A}' \mid \dots \mid \beta_n \mathbf{A}'$

 $A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \ldots \mid \alpha_m A' \mid \epsilon$

- The derived string will always ending up with β_i in front
- Followed by any combination of α_i 's

- ✤ How to eliminate left recursion
 - □ Hidden left recursion
 - $S \to A\alpha \mid b$
 - $A \to A\beta \mid S\gamma \mid \epsilon$
- Elimination steps

□ Index the non-terminals $(A_1, A_2, ...)$ for i := 1 to n do -- current production for j := 1 to i - 1 do -- previous non-terminals if A_j appears in A_i 's production, like $A_i \rightarrow A_j \gamma$, then $A_i \rightarrow \delta_1 \gamma | \delta_2 \gamma | ...$ (assume that $A_j \rightarrow \delta_1 | \delta_2 | ...$) eliminate left recursion for A_i 's productions

 \Box E.g., when processing A

 $A \rightarrow S\gamma$ is substituted by $A \rightarrow A\alpha\gamma \mid b\gamma$ first then eliminate left recursion for A

✤ For grammar

$E \rightarrow E + T \mid T$	$A \rightarrow A\alpha \mid \beta \Longrightarrow$
$T \rightarrow T * F F$	$A \rightarrow \beta A'$
$F \rightarrow (E) \mid id \mid num$	$A' \rightarrow \alpha A'$

✤ E

 $E \rightarrow TE'$ $E' \rightarrow +TE' \mid \varepsilon$

✤ T

 $\begin{array}{l} T \rightarrow FT' \\ T' \rightarrow *FT' \mid \epsilon \end{array}$

✤ F

 $F \rightarrow (E) \mid id \mid num$

• All start with non-terminals, no left recursion

Left Factoring

✤ Given a non-terminal A, represent its rules as:

 $A \to \alpha \beta_1 \mid \alpha \beta_2 \mid \ldots \mid \gamma$

- α is the longest matching prefix of several A productions
- γ is the other productions that does not have leading α
- α should be eliminated to achieve predictive parsing
- **Rewrite the production rules**

 $\begin{array}{l} A \rightarrow \alpha A^{'} \mid \gamma \\ A^{'} \rightarrow \beta_{1} \mid \beta_{2} \mid \dots \end{array}$

Left Factoring

- ✤ Grammar
 - $S \rightarrow if E then S else S$
 - $S \rightarrow \text{if } E \text{ then } S$

Rewrite the rules

- $S \rightarrow if E$ then S S'
- $S' \to else \; S \mid \epsilon$
- Input: if a then if b then s1 else s2
- S ⇒ if E then S S' ⇒ if a then S S' ⇒ if a then if E then S S' S' ⇒ if a then if b then S S' S' ⇒ if a then if b then s1 S' S'
 - Could be: \Rightarrow if a then if b then s1 else s2 ϵ
 - Could be: \Rightarrow if a then if b then s1 ϵ else s2
- Left factoring cannot eliminate ambiguity

 $\begin{aligned} \mathbf{A} &\to \alpha \beta 1 \mid \alpha \beta 2 \mid \dots \mid \gamma \Longrightarrow \\ \mathbf{A} &\to \alpha \mathbf{A}' \mid \gamma \\ \mathbf{A}' &\to \beta 1 \mid \beta 2 \mid \dots \end{aligned}$

Eliminate Left Recursion and Left Factoring

✤ Given a grammar

**

□ First eliminate left recursion

□ Then perform left factoring

□ Now, compute "First" -- first terminals of each production

Grammar	A language can be expressed by an infinite number
$E \rightarrow TE'$	of grammars
$E' \rightarrow +TE' \mid \epsilon$	You can rewrite a left recursive grammar into a
$T \rightarrow FT'$	totally different form to make it not left recursive But such grammar rewriting is not left recursion
$T' \rightarrow *FT' \mid \epsilon$	elimination
$F \rightarrow (E) \mid id \mid num$	Left recursion elimination is this specific process

- No longer left recursive
- No longer have left factors
- Ready to compute first

$$First(\alpha) = \{ t \mid \alpha \Rightarrow^* t\beta \}$$

 \Box Consider all possible terminal strings derived from α

□ The set of the first terminals of those strings

✤ For all terminals t ∈ T
□ First(t) = {t}

- ♦ For all non-terminals $X \in N$
 - $\Box \quad \text{If } X \to \epsilon \Rightarrow \text{add } \epsilon \text{ to } \text{First}(X)$
 - $\Box \quad \text{If } X \to \alpha_1 \alpha_2 \dots \alpha_n$
 - α_i is either a terminal or a non-terminal (not a string as usual) \Rightarrow
 - Add all terminals in $First(\alpha_1)$ to First(X)
 - Exclude ε
 - If $\varepsilon \in \text{First}(\alpha_1) \land \ldots \land \varepsilon \in \text{First}(\alpha_{i-1})$ then add all terminals in $\text{First}(\alpha_i)$ to First(X)
 - If $\varepsilon \in First(\alpha_1) \land ... \land \varepsilon \in First(\alpha_n)$ then add ε to First(X)
- ✤ Apply the rules until nothing more can be added
 - For adding t or ε: add only if t is not in the set yet

✤ Grammar

 $E \rightarrow TE'$ $E' \rightarrow +TE' \mid \varepsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \varepsilon$ $F \rightarrow (E) \mid id \mid num$

First

```
First(*) = {*}, First(+) = {+}, ...

First(F) = {(, id, num}

First(T') = {*, \varepsilon}

First(T) = First(F) = {(, id, num}

First(E') = {+, \varepsilon}

First(E) = First(T) = {(, id, num}
```

✤ Grammar

- $S \rightarrow AB$
- $A \rightarrow aA \mid \epsilon$
- $B \to bB \mid \epsilon$

First

First(A) =
$$\{a, \varepsilon\}$$

First(B) = $\{b, \varepsilon\}$
First(S) = First(A) = $\{a, \varepsilon\}$ Is this complete?

		If we see a	If we see b	If we see c	If we see d	
$First(\alpha)$	When expanding S	Use R1	Use R2	Use R1	Use R2	
	When expanding A	Use R3	-	Use R4	-	
Grammar	When expanding B	-	Use R5	-	Use R6	
$S \rightarrow AB \mid B (R1)$	R2)					
$A \rightarrow aA \mid c (R3)$	$ \mathbf{D}A\rangle$	Input: acbd Expands S, seeing a, use R1: S \Rightarrow AB Expands A, seeing a, use R3: AB \Rightarrow aAB				
$B \rightarrow bB \mid d (R5)$	1(0)					
✤ First	E	Expands A, seeing c, use R4: $aAB \Rightarrow acB$ Expands B, seeing b, use R5: $acB \Rightarrow acbB$				
$First(A) = \{a, c\}$	Expands B, se	eing d, use F	$R6: acbB \Longrightarrow a$	acbd		
$First(B) = \{b, d\}$						

 $First(S) = First(A) \cup First(B) = \{a, b, c, d\}$

Productions

 \Box First (R1) = {a, c}, First (R2) = {b, d}

 \Box First (R3) = {a}, First (R4) = {c}

G First (R5) = $\{b\}$, First (R6) = $\{d\}$

				If we see a	If we see b	If we see ε	
$First(\alpha)$		When expa	nding S	Use R1	Use R1	Use R1	
• ~		When expa	nding A	Use R2	-	Use R3	
Grammar		When expa	nding B	-	Use R4	Use R5	
$S \rightarrow AB$	(R1)						
$A \rightarrow aA \mid \varepsilon$	(R2 R3)		Input: aabb				
$B \rightarrow bB \mid \epsilon$	ε (R4 R5)			Use R1: S \Rightarrow AB Expands A, seeing a, use R2: AB \Rightarrow aAB			

Expands A, seeing a, use R2: $aAB \Rightarrow aaAB$

Expands A, seeing b, What to do? Not in table!

First

First(A) = $\{a, \varepsilon\}$ First(B) = $\{b, \varepsilon\}$

 $First(S) = First(A) \cup First(B) = \{a, b, \epsilon\}$

Productions

 $\Box \text{ First } (R1) = \{a, b, \epsilon\}$

 $\Box \text{ First } (R2) = \{a\}, \text{ First } (R3) = \{\epsilon\}$

□ First (R4) = $\{b\}$, First (R5) = $\{\epsilon\}$

Follow(α)

 $\clubsuit \quad \text{Follow}(\alpha) = \{ t \mid S \Rightarrow^* \alpha t\beta \}$

 $\hfill\square$ Consider all strings that may follow α

□ The set of the first terminals of those strings

Assumptions

 \Box There is a \$ at the end of every input string

□ S is the starting symbol

✤ For all non-terminals only

 $\Box \quad \text{Add } \$ \text{ into Follow}(S)$

 $\Box \text{ If } A \to \alpha B\beta \Rightarrow \text{add First}(\beta) - \{\epsilon\} \text{ into Follow}(B)$

 $\Box \quad \text{If } A \to \alpha B \text{ or }$

 $A \rightarrow \alpha B\beta$ and $\varepsilon \in First(\beta)$

 \Rightarrow add Follow(A) into Follow(B)

Follow(α)

* First First(A) = $\{a, ε\}$			A	$b \rightarrow AB$ $a \rightarrow aA \mid \varepsilon$ $bB \mid \varepsilon$	(R1) (R2 R3) (R4 R5)
$First(B) = \{b, \varepsilon\}$				If we see a	If we see b
$First(S) = First(A) = \{a,$, b, ε}	When ex	xpanding S	Use R1	Use R1
Productions		When ex	kpanding A	Use R2	?
$\Box \text{ First } (R1) = \{a, b, \epsilon\}$	}	When expanding B		-	Use R4
\Box First (R2) = {a}, Fi			If we see a	If we see b	If we see \$
$\Box \text{ First } (R4) = \{b\}, \text{ Fi}$	When expa	anding S	Use R1	Use R1	Use R1
✤ Follow	When expa	anding A	Use R2	Use R3	Use R3
$\Box \text{ Follow}(S) = \{\$\}$	When expa	anding B	-	Use R4	Use R5
	(α) (φ)				

Grammar

 $\Box \text{ Follow}(B) = \text{Follow}(S) = \{\$\}$

 $\Box Follow(A) = First(B) \cup Follow(S) = \{b, \$\}$

• Since $\varepsilon \in First(B)$, Follow(S) should be in Follow(A)

Construct a Parse Table

- Construct a parse table M[N, T∪{\$}]
 □ Non-terminals in the rows and terminals in the columns
- ♦ For each production $A \rightarrow \alpha$
 - □ For each terminal $a \in First(\alpha)$

 \Rightarrow add A $\rightarrow \alpha$ to M[A, a]

- Meaning: When at A and seeing input a, $A \rightarrow \alpha$ should be used
- □ If $\varepsilon \in First(\alpha)$ then for each terminal $a \in Follow(A)$

 \Rightarrow add A $\rightarrow \alpha$ to M[A, a]

- Meaning: When at A and seeing input a, $A \rightarrow \alpha$ should be used
 - In order to continue expansion to ε
 - $\bullet \quad X \to AC \quad A \to B \quad B \to b \mid \epsilon \quad C \to cc$
- **I** If $\varepsilon \in \text{First}(\alpha)$ and $\$ \in \text{Follow}(A)$

 \Rightarrow add A $\rightarrow \alpha$ to M[A, \$]

• Same as the above

First(α) and **Follow**(α) – another example

- **G** First(*) = {*}
- $\Box \quad First(F) = \{(, id, num\} \}$
- $\Box \quad \text{First}(T') = \{*, \epsilon\}$
- $\Box \quad First(T) = First(F) = \{(, id, num)\}$
- $\Box \quad First(E') = \{+, \epsilon\}$
- $\Box \quad First(E) = First(T) = \{(, id, num)\}$

```
Grammar

E \rightarrow TE'

E' \rightarrow +TE' \mid \varepsilon

T \rightarrow FT'

T' \rightarrow *FT' \mid \varepsilon

F \rightarrow (E) \mid id \mid num
```

- **G** Follow(E) = $\{\$, \}$
- $\Box \quad Follow(E') = Follow(E) = \{\$, \}$
- **G** Follow(T) = {\$,), +}
 - Since we have TE' from first two rules and E' can be ε
 - Follow(T) = (First(E') $\{\epsilon\}$) \cup Follow(E')
- **G** Follow(T') = Follow(T) = $\{$ \$, $), +\}$
- **G** Follow(F) = {*, \$,), +}
 - Follow(F) = (First(T')- $\{\epsilon\}$) \cup Follow(T')

Construct a Parse Table

Grammar	$First(*) = \{*\}$	$Follow(E) = \{\$, \}$
$E \rightarrow TE'$	$First(F) = \{(, id, num\}\}$	$Follow(E') = \{\$, \}$
$E' \rightarrow +TE' \mid \epsilon$	$First(T') = \{*, \varepsilon\}$	$Follow(T) = \{\$, \}, +\}$
$T \rightarrow FT'$	<pre>First(T) {(, id, num}</pre>	$Follow(T) = \{\$, \}, +\}$
$T' \rightarrow *FT' \mid \epsilon$	$First(E') = \{+, \epsilon\}$	$Follow(T') = \{\$, \}, +\}$
$F \rightarrow (E) \mid id \mid num$	<pre>First(E) {(, id, num}</pre>	Follow(F) = {*, \$,), +}

 $E \rightarrow TE': E' \rightarrow E' - T \rightarrow FT': FT' \rightarrow T' \rightarrow \varepsilon: Follow(T') = \{\$, \}$

	id	num	*	+	()	\$	ĺ
	$E \rightarrow TE'$	$E \rightarrow TE'$			$E \rightarrow TE'$			
E'			($E' \rightarrow +TE'$	\supset	$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$	
\mathbf{X}	$T \rightarrow FT'$	$T \rightarrow FT'$			$T \rightarrow FT'$	>		
Τ'			$T' \rightarrow *FT'$	$T' \rightarrow \varepsilon$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$	\triangleright
F	$F \rightarrow id$	$F \rightarrow num$			$F \rightarrow (E)$			

- ✤ Now we can have a predictive parsing mechanism
 - Use a stack to keep track of the expanded form
 - □ Initialization
 - Put starting symbol S and \$ into the stack
 - Add \$ to the end of the input string
 - \$ is for the recognition of the termination configuration
 - □ If a is at the top of the stack and a is the next input symbol then
 - Simply pop a from stack and advance on the input string
 - \Box If A is on top of the stack and a is the next input symbol then
 - Assume that $M[A, a] = A \rightarrow \alpha$
 - Replace A by α in the stack
 - **Termination**
 - When only \$ in the stack and in the input string
 - □ If A is on top of the stack and a is the next input but
 - M[A, a] = empty Error!

				Stack		In	put		Action		
	Pop F from s	stack		E \$		id	+ num * id \$		E→TE'		
	Remove id f	rom input		T E' \$		id	+ num * id \$		$T \rightarrow FT'$		
	Don T' from (yta alt		FT'E	'\$	id	+ num * id \$		$F \rightarrow id$		
	Pop T' from s Input unchan			T'E'\$	5	+ 1	num * id \$		$T' \rightarrow \epsilon$		
	input unenangeu			E'\$		+ 1	num * id \$		$E' \rightarrow +T$	E'	
	E': Only TE' in		>	- T E' \$		nu	m * id \$		$T \rightarrow FT'$		
Re	nove + from in	put		FT'E	'\$	nu	m * id \$		$F \rightarrow num$	1	
				T'E'\$ * io		* id \$			$T' \rightarrow *FT'$		
			F T' E' \$ id \$		\$		$F \rightarrow id$				
				T' E' \$		\$			$T' \rightarrow \epsilon$		
_				E' \$		\$			$E' \rightarrow \varepsilon$		
	id	num		*	+		()		\$
E	$E \rightarrow TE'$	$E \rightarrow TE'$					$E \rightarrow TE'$				
E	,				$E' \rightarrow +T$	Έ']	$\Xi' \rightarrow \varepsilon$	E'	$\rightarrow \epsilon$
Г	$T \rightarrow FT'$	$T \rightarrow FT'$					$T \rightarrow FT'$				
Т	,		T' –	→ *FT'	$T' \rightarrow \epsilon$	3		r	$\Gamma' \rightarrow \epsilon$	T'	$\rightarrow \epsilon$
F	$F \rightarrow id$	$F \rightarrow num$					$F \rightarrow (E)$				

Build the Parse Tree

✤ For each non-terminal in the stack

 $\hfill\square$ Keep a pointer to its location in the parse tree

✤ Initialization

□ After putting S in stack, create T(S) as the root of the tree and let S points to T(S)

 $\clubsuit \text{ At each expansion of } X \to \alpha$

 \Box Create child nodes of T(X) for all terminals and nonterminals in α

□ For each non-terminals added, let it point back to its corresponding tree node (when expanding, knowing where the node is in the tree)

Termination

 \Box When the parsing terminates, the tree is built

• The predictive parsing we had is LL(1) parsing

□ First L: scanning input from left to right

□ Second L: Leftmost derivation

□ 1: lookahead 1 input character

□ Similar to recursive descent

- But use table to determine which production to use
- Use stack to keep track of pending non-terminals

- Requirements for LL(1) grammar
 - $\Box A \rightarrow \alpha_1 \mid \alpha_2 \mid \dots$

□ For all i, j, i ≠ j, First(α_i) \cap First(α_j) = ϕ

- $A \rightarrow B \mid a, B \rightarrow ab$
- First of $A \rightarrow B$ and $A \rightarrow a$ both has a
- Expanding A, seeing input a, can't know which rule to use

 \Box If $\alpha_i = \varepsilon$, then, for all j, $i \neq j$, First $(\alpha_i) \cap$ Follow(A) = ϕ

- $S \rightarrow AB$, $A \rightarrow ac \mid \epsilon$, $B \rightarrow a$
- First of $A \rightarrow ac$ and Follow(A) both has a
- When seeing a while expanding A, not sure to use $A \rightarrow ac$ or $A \rightarrow \epsilon$

- ✤ What grammar is not LL(1)?
 - □ Left recursive
 - $A \rightarrow A\alpha \mid \beta$
 - $First(\beta) \subseteq First(A)$
 - Two production rules of A: $A \rightarrow A\alpha$ and $A \rightarrow \beta$ have the same terminals in their "First" sets (or $A \rightarrow A\alpha$ has a super set)

Grammar that is not left factored

- Two productions with the same left symbols have the same First set
- $A \rightarrow \alpha\beta \mid \alpha\delta \Rightarrow$ both rules will get into M[A,f]
 - f is any terminal in $First(\alpha)$

- ♦ What grammar is not LL(1)?
 - $S \to A \mid B$
 - $A \to aaA \mid \epsilon$
 - $B \rightarrow abB \mid b$

	a	b	\$
S	$S \rightarrow A$	$S \rightarrow B$	$S \rightarrow A$
	$S \rightarrow B$		
А	$A \rightarrow aaA$		$A \rightarrow \epsilon$
В	$B \rightarrow abB$	$B \rightarrow b$	

- First(A) = $\{a, \varepsilon\}$, First(B) = $\{a, b\}$, First(S) = $\{a, b, \varepsilon\}$
- Follow(S) = {\$}, Follow(A) = {\$}, Follow(B) = {\$}

 \Box But this grammar is LL(2)

- If we lookahead 2 input characters, predictive parsing is possible
- First₂(A) = {aa, ε }, First₂(B) = {ab, b\$}, First₂(S) = {aa, ab, b\$, ε }

	aa	ab	b\$	\$	ba, bb, a\$
S	$S \rightarrow A$	$S \rightarrow B$	$S \rightarrow B$	$S \rightarrow A$	
А	$A \rightarrow aaA$			$A \rightarrow \epsilon$	
В		$B \rightarrow abB$	$B \rightarrow b$		

- ♦ What grammar is not LL(1)?
 - $S \to AB$
 - $A \to ab \mid \epsilon$

 $B \rightarrow a$

	a	b	\$
S	$S \rightarrow AB$		$S \rightarrow AB$
А	$A \rightarrow ab$		
	$A \rightarrow \varepsilon$		
В	$B \rightarrow a$		

- First(B) = {a}, First(A) = {a, ε}, First(S) = {a, ε}
- Follow(S) = {\$}, Follow(B) = {\$}, Follow(A) = {a}

 \Box But this grammar is also LL(2)

• First₂(B) = {a\$}, First₂(A) = {ab, ε }, First₂(S) = {ab, a\$}

	a\$	ab	\$
S	$S \rightarrow AB$	$S \rightarrow AB$	
Α	$A \rightarrow \epsilon$	$A \rightarrow ab$	
В	$B \rightarrow a$		

LL(2) Parsing Example

 $\begin{array}{l} S \rightarrow AB \\ A \rightarrow abA \mid \epsilon \\ B \rightarrow aB \mid \epsilon \end{array}$

 $First_2(A) = \{ab, \varepsilon\}$ $First_2(B) = \{aa, a\$, \varepsilon\}$ $First_2(S) = \{ab, aa, a\$, \varepsilon\}$

Follow₂(S) = {\$} Follow₂(B) = {\$} Follow₂(A) = {aa, a\$, \$}

Input: abaaa

	a\$	aa	ab	\$
S	$S \rightarrow AB$	$S \rightarrow AB$	$S \rightarrow AB$	$S \rightarrow AB$
A	$A \rightarrow \epsilon$	$A \rightarrow \epsilon$	$A \rightarrow abA$	$A \rightarrow \epsilon$
В	$B \rightarrow aB$	$B \rightarrow aB$		$B \to \epsilon$

Stack	Input	Action
S \$	abaaa\$	$S \rightarrow AB$
AB\$	abaaa\$	$A \rightarrow abA$
AB\$	aaa\$	$A \rightarrow \varepsilon$
B \$	aaa\$	$B \rightarrow aB$
B \$	aa\$	$B \rightarrow aB$
B \$	a\$	$B \rightarrow aB$
B \$	\$	$B \rightarrow \epsilon$
\$	\$	

LL(k) parsing

□ Allow to lookahead k input characters

 \Box Can extend LL(1) parsing method to LL(k) parsing

- Build parsing table based on first k terminals First_k(X)
- ♦ What grammar is not LL(k)?
 - $S \rightarrow A \mid B$
 - $A \rightarrow aaA \mid aa$
 - $B \rightarrow aaB \mid a$

- aaaaa\$S $S \rightarrow A$ $S \rightarrow A$ S $S \rightarrow B$ $S \rightarrow B$ A $A \rightarrow aaA$ $A \rightarrow aa$ O $B \rightarrow aaB$ $B \rightarrow a$
- Even number of a's \Rightarrow parse with A production rule
- Odd number of a's \Rightarrow parse with B production rule
- Need to continue to lookahead till the end of the input string
- First₃(B) = {aaa, a\$}, First₃(A) = {aaa, aa\$}, First₃(S) = {aaa, aa\$, a\$}

What grammar is not LL(k)? $S \rightarrow A \mid B$ $A \rightarrow aaA \mid aa$ $B \rightarrow aaB \mid a$ Can something be done? Rewrite the grammar $S \rightarrow aaS \mid E \mid O$ $E \rightarrow aa$ $O \rightarrow a$

 $\Box \text{ Becomes LL}(3)$

	aaa	aa\$	a\$
S	S→aaS	S→E	S→O
E		E→aa	
0			O→a

 $\Box First_3(E) = \{aa\}, First_3(O) = \{a\}, First_3(S) = \{aaa, aa\}, a\}$

♦ What grammar is not LL(k)?
□ Ambiguous grammars
S → if E then S else S
S → if E then S

About LL(k) language

□ A language is LL(k) if there exists an LL(k) grammar for it

Check whether a grammar is LL(k)

- If given an arbitrary k
- Always can find the same First_k substring for two X-productions
- Then the grammar is not LL(k)

□ There are CFGs that are not LL(k)

 $S \to A \mid B$

- $A \rightarrow aAa \mid aa$
- $B \to aBb \mid ab$
- No matter how big the k is, one can always find more than k aaa…a in the first set of S → A and S → B
- This is true for the language itself

\clubsuit How about LL(0)?

Only one rule to use, no lookahead needed

□ Subsequently, only one word in the language

Top-Down Parsing -- Summary

- Top down parsing
 - □ Recursive descent parsing
 - □ Making it a predictive parsing algorithm
 - Left recursion elimination
 - Left factoring
 - LL parsing
 - First set and Follow set
 - Parse table construction
 - Parsing procedure
 - LL grammars and languages
 - LL(1) grammar
 - LL(k) grammar